Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[[[(1-ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3carboxylato)manganese(II)]- μ_3 -4,4'oxydibenzoato] monohydrate]

Jun Hong

Department of Chemistry, Jilin Normal University, Siping 136000, People's Republic of China

Correspondence e-mail: junhong000@hotmail.com

Received 8 November 2007; accepted 19 November 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.038; wR factor = 0.129; data-to-parameter ratio = 15.3.

In the title compound, $\{[Mn(C_{16}H_{18}N_3O_3)(C_{14}H_8O_5)]\cdot H_2O\}_n$, the unique Mn^{II} ion is coordinated by two O atoms from a chelating 1-ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4dihydroquinoline-3-carboxylate ligand and three O atoms from three 4,4'-oxydibenzoate ligands, forming a distorted square-pyramidal coordination environment. In the crystal structure, centrosymmetric dinuclear manganese units are linked *via* 4,4'-oxydibenzoate ligands into one-dimensional chains; these chains are, in turn, connected *via* intermolecular $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds to form a twodimensional supramolecular network. The O atom of the solvent water molecule is disordered over two sites with equal occupancies; the attached H atoms are common to both sites.

Related literature

For general background, see: Xiao *et al.* (2005). For a related structure, see: An *et al.* (2007).

Experimental

Crystal data

$$\begin{split} & [\mathrm{Mn}(\mathrm{C}_{16}\mathrm{H}_{18}\mathrm{N}_3\mathrm{O}_3)(\mathrm{C}_{14}\mathrm{H}_8\mathrm{O}_5)]\cdot\mathrm{H}_2\mathrm{O} & \gamma = 102.318~(5)^\circ \\ & M_r = 648.49 & V = 1390.1~(10)~\mathrm{\AA}^3 \\ & \mathrm{Triclinic}, P\overline{1} & Z = 2 \\ & a = 10.208~(5)~\mathrm{\AA} & \mathrm{Mo}~\mathrm{Ka}~\mathrm{radiation} \\ & b = 11.915~(5)~\mathrm{\AA} & \mu = 0.55~\mathrm{mm}^{-1} \\ & c = 13.202~(5)~\mathrm{\AA} & T = 298~(2)~\mathrm{K} \\ & \alpha = 100.751~(5)^\circ & 0.23 \times 0.20 \times 0.18~\mathrm{mm} \\ & B = 112.010~(5)^\circ \end{split}$$

Data collection

Bruker SMART APEX CCD area-
detector diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.885, T_{\max} = 0.908$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	
$wR(F^2) = 0.129$	
S = 1.05	
6236 reflections	
407 parameters	

13533 measured reflections 6236 independent reflections 5434 reflections with $I > 2\sigma(I)$

 $R_{\rm int}=0.031$

6 restraints
H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.55 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} O1W' - H2 \cdots O3^{i} \\ O1W' - H2 \cdots O4^{i} \end{array}$	1.16 1.16	2.40 1.87	3.359 (14) 2.874 (12)	138 142
$N3-H3B\cdots O8^{i}$ $N3-H3C\cdots O4^{ii}$	0.90 0.90	1.80 1.83	2.694 (3) 2.716 (3)	169 169

Symmetry codes: (i) x - 1, y - 1, z; (ii) x - 1, y - 2, z.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL-Plus* (Sheldrick, 1990); software used to prepare material for publication: *SHELXL97*.

The authors thank Jilin Normal University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2564).

References

An, Z., Huang, J. & Qi, W. (2007). Acta Cryst. E63, m2009.

- Bruker (1997). SMART. Version 5.622. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Xiao, D.-R., Wang, E.-B., An, H.-Y., Su, Z.-M., Li, Y.-G., Gao, L., Sun, C.-Y. & Xu, L. (2005). *Chem. Eur. J.* **11**, 6673–6686.

Acta Cryst. (2008). E64, m21 [doi:10.1107/S1600536807060825]

$\label{eq:poly} Poly[[(1-ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylato)manganese(II)]-$\mu_3-4,4'-oxydibenzoato] monohydrate]$

J. Hong

Comment

Norfloxacin [1-Ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(piperazin-1-yl)quinoline-3-carboxylic acid, Hcf] is a member of a class of quinolones that is used to treat infections (Xiao *et al.* 2005; An *et al.* 2007). As a part of our ongoing investigations in this field, we report here the crystal structure of the title compound. In the crystal structure of the title compound, the Mn atoms are coordinated by three oxygen atoms of one Hcf ligand, one 4,4'-oxydibenzoate ligand and one oxygen atom from one symmetry related 4,4'-oxydibenzoate within a distorted square-pyramidal geometry (Figure 1). In the crystal structure, dinuclear manganese units are linked *via* the 4,4'-oxydibenzoate anions into a one-dimensional chain running along [-2, -3, 2]. Finally, one-dimensional chains are connected with N—H…O and O—H…O hydrogen bonds to form a two-dimensional supramolecular network.

Experimental

The title compound was prepared by a hydrothermal method. A mixture of $MnCl_2$ (0.07 g 0.5 mmol), norfloxacin (0.16 g 0.5 mmol), 4,4'-oxy-bisbenzoic acid (0.13 g 0.5 mmol) and water (10 ml) was stirred for 20 min and then transferred to a 23 ml Teflon reactor. The reactor was kept at 433 K for 72 h under autogenous pressure. Single crystals of were obtained after cooling to room temperature.

Refinement

H atoms were placed in calculated positions with C—H = 0.93, 0.96 and 0.97 Å and N—H = 0.90 Å, and refined in riding mode with $U_{iso}(H) = 1.2U_{eq}(C, N, O)$. H atoms of water molecule were located in difference maps but were included as riding with O - H = 0.85 Å and $U_{iso}(H) = 1.5 U_{eq}(O)$. The O atom of the water molecule is disordered over two sites with the ratio of refined occupancies being 0.50 (2):0.50 (2). The H atoms of this water molecule are common to both sites.

Figures

Fig. 1. Part of the crystal structure with labeling and displacement ellipsoids drawn at the 50% probability level. [Symmetry code: i = x - 1, y - 1, z; ii = -x + 2, -y + 1, -z + 1]. The disorder is not showm.

catena-Poly[[[(1-ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline- 3-carboxylato- $\kappa^2 O^3, O^4$)manganese(II)]- μ -4,4'-oxydibenzoato- $\kappa^3 O, O':O''$] monohydrate]

Crystal data [$Mn(C_{16}H_{18}N_3O_3)(C_{14}H_8O_5)$]·H₂O Z = 2

$M_r = 648.49$	$F_{000} = 670$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.549 {\rm ~Mg~m^{-3}}$
Hall symbol: -P 1	Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
a = 10.208 (5) Å	Cell parameters from 13533 reflections
b = 11.915 (5) Å	$\theta = 3.2 - 27.5^{\circ}$
c = 13.202 (5) Å	$\mu = 0.55 \text{ mm}^{-1}$
$\alpha = 100.751 (5)^{\circ}$	T = 298 (2) K
$\beta = 112.010 \ (5)^{\circ}$	Block, colorless
$\gamma = 102.318 (5)^{\circ}$	$0.23 \times 0.20 \times 0.18 \text{ mm}$
$V = 1390.1 (10) \text{ Å}^3$	

Data collection

Bruker SMART APEX CCD area-detector diffractometer	6236 independent reflections
Radiation source: fine-focus sealed tube	5434 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.031$
T = 298(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 3.2^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -12 \rightarrow 13$
$T_{\min} = 0.885, T_{\max} = 0.908$	$k = -14 \rightarrow 15$
13533 measured reflections	$l = -17 \rightarrow 17$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.038$	H-atom parameters constrained
$wR(F^2) = 0.129$	$w = 1/[\sigma^2(F_o^2) + (0.0863P)^2 + 0.3678P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\text{max}} = 0.001$
6236 reflections	$\Delta \rho_{max} = 0.55 \text{ e} \text{ Å}^{-3}$
407 parameters	$\Delta \rho_{min} = -0.35 \text{ e } \text{\AA}^{-3}$
6 restraints	Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Mn1	0.87296 (3)	0.44003 (2)	0.32348 (2)	0.02128 (10)	
C1	1.1128 (2)	0.82195 (16)	0.49788 (16)	0.0247 (4)	
C2	1.1270 (2)	0.90958 (17)	0.59100 (16)	0.0264 (4)	
H2A	1.0997	0.8865	0.6456	0.032*	
C3	1.1812 (2)	1.03007 (17)	0.60306 (16)	0.0273 (4)	
H3A	1.1903	1.0879	0.6654	0.033*	
C4	1.2219 (2)	1.06439 (16)	0.52159 (17)	0.0262 (4)	
C5	1.2094 (2)	0.97946 (18)	0.42831 (18)	0.0314 (4)	
H5A	1.2378	1.0029	0.3743	0.038*	
C6	1.1536 (2)	0.85872 (17)	0.41711 (18)	0.0297 (4)	
H6A	1.1432	0.8010	0.3541	0.036*	
C7	1.0531 (2)	0.69147 (17)	0.48503 (18)	0.0264 (4)	
C8	1.4875 (2)	1.36779 (17)	0.38123 (17)	0.0265 (4)	
С9	1.3520 (2)	1.37948 (19)	0.37526 (19)	0.0323 (4)	
H9A	1.3122	1.4316	0.3380	0.039*	
C10	1.2758 (2)	1.31470 (19)	0.42401 (19)	0.0315 (4)	
H10A	1.1860	1.3237	0.4205	0.038*	
C11	1.3354 (2)	1.23664 (16)	0.47793 (17)	0.0280 (4)	
C12	1.4669 (2)	1.21939 (18)	0.48114 (18)	0.0329 (4)	
H12A	1.5031	1.1635	0.5143	0.039*	
C13	1.5432 (2)	1.28651 (19)	0.43436 (18)	0.0303 (4)	
H13A	1.6331	1.2773	0.4384	0.036*	
C14	1.5780 (2)	1.44426 (18)	0.33786 (18)	0.0298 (4)	
C15	0.72279 (18)	0.18861 (15)	0.16263 (14)	0.0198 (3)	
C16	0.84417 (19)	0.18967 (15)	0.13214 (15)	0.0208 (3)	
C17	0.8599 (2)	0.08327 (16)	0.08805 (16)	0.0247 (4)	
H17A	0.9375	0.0866	0.0669	0.030*	
C18	0.65597 (18)	-0.03553 (15)	0.10430 (14)	0.0201 (3)	
C19	0.62933 (18)	0.06987 (15)	0.14683 (14)	0.0195 (3)	
C20	0.51069 (19)	0.06089 (16)	0.17796 (15)	0.0224 (3)	
H20A	0.4918	0.1299	0.2068	0.027*	
C21	0.42376 (19)	-0.04923 (17)	0.16565 (16)	0.0239 (4)	
C22	0.44917 (19)	-0.15747 (15)	0.12569 (15)	0.0216 (3)	
C23	0.56632 (19)	-0.14844 (15)	0.09490 (15)	0.0208 (3)	
H23A	0.5859	-0.2178	0.0677	0.025*	
C24	0.3535 (2)	-0.28055 (17)	0.22389 (17)	0.0278 (4)	
H24A	0.3440	-0.2084	0.2647	0.033*	
H24B	0.4467	-0.2906	0.2713	0.033*	
C25	0.2255 (2)	-0.38815 (17)	0.20169 (19)	0.0303 (4)	
H25A	0.2272	-0.3970	0.2737	0.036*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H25B	0.1318	-0.3765	0.1578	0.036*	
C26	0.2411 (2)	-0.48454 (17)	0.02785 (17)	0.0314 (4)	
H26A	0.1473	-0.4761	-0.0203	0.038*	
H26B	0.2525	-0.5562	-0.0121	0.038*	
C27	0.3680 (2)	-0.37514 (16)	0.04987 (16)	0.0271 (4)	
H27A	0.4625	-0.3864	0.0925	0.032*	
H27B	0.3646	-0.3653	-0.0223	0.032*	
C28	0.95504 (19)	0.30350 (15)	0.14442 (16)	0.0230 (4)	
C29	0.8106 (2)	-0.13254 (17)	0.02814 (19)	0.0298 (4)	
H29A	0.8568	-0.1147	-0.0216	0.036*	
H29B	0.7203	-0.1998	-0.0167	0.036*	
C30	0.9141 (3)	-0.1668 (2)	0.1229 (2)	0.0460 (6)	
H30A	0.9362	-0.2358	0.0915	0.069*	
H30B	0.8681	-0.1855	0.1718	0.069*	
H30C	1.0044	-0.1010	0.1665	0.069*	
F1	0.30490 (14)	-0.05557 (11)	0.18978 (12)	0.0368 (3)	
N1	0.77241 (17)	-0.02611 (13)	0.07263 (14)	0.0234 (3)	
N2	0.35453 (17)	-0.26761 (13)	0.11516 (13)	0.0232 (3)	
N3	0.23945 (18)	-0.49768 (14)	0.13743 (14)	0.0272 (3)	
H3B	0.1626	-0.5617	0.1228	0.033*	
H3C	0.3240	-0.5105	0.1802	0.033*	
01	1.01455 (17)	0.61842 (12)	0.38860 (14)	0.0356 (3)	
O2	1.04421 (16)	0.66314 (13)	0.56977 (14)	0.0323 (3)	
O3	1.71509 (15)	1.46076 (13)	0.38222 (13)	0.0342 (3)	
O4	1.51348 (18)	1.48909 (17)	0.26125 (17)	0.0451 (4)	
O5	1.26452 (19)	1.18672 (13)	0.53831 (14)	0.0360 (3)	
O6	0.69325 (14)	0.28045 (11)	0.19922 (12)	0.0260 (3)	
O7	0.96748 (15)	0.40179 (12)	0.20826 (12)	0.0291 (3)	
O8	1.03114 (17)	0.29361 (12)	0.08966 (14)	0.0366 (4)	
O1W	0.7413 (5)	0.5678 (6)	0.2066 (4)	0.0338 (16)	0.50 (2)
H1	0.8224	0.6189	0.2575	0.051*	
H2	0.6698	0.5411	0.2226	0.051*	
O1W'	0.7286 (5)	0.6219 (15)	0.2009 (4)	0.064 (3)	0.50 (2)

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Mn1	0.02024 (16)	0.01816 (15)	0.02471 (16)	0.00072 (10)	0.01335 (11)	0.00295 (11)
C1	0.0233 (9)	0.0223 (9)	0.0277 (9)	0.0064 (7)	0.0100 (7)	0.0088 (7)
C2	0.0276 (9)	0.0303 (10)	0.0235 (9)	0.0084 (7)	0.0120 (7)	0.0111 (7)
C3	0.0333 (10)	0.0251 (9)	0.0217 (9)	0.0085 (7)	0.0113 (7)	0.0047 (7)
C4	0.0290 (10)	0.0202 (8)	0.0281 (9)	0.0054 (7)	0.0120 (7)	0.0074 (7)
C5	0.0406 (11)	0.0261 (9)	0.0300 (10)	0.0049 (8)	0.0209 (8)	0.0080 (8)
C6	0.0356 (11)	0.0235 (9)	0.0302 (10)	0.0053 (7)	0.0184 (8)	0.0039 (7)
C7	0.0199 (9)	0.0237 (9)	0.0373 (10)	0.0071 (7)	0.0136 (7)	0.0098 (8)
C8	0.0223 (9)	0.0252 (9)	0.0318 (10)	0.0059 (7)	0.0130 (7)	0.0071 (7)
C9	0.0314 (11)	0.0360 (11)	0.0426 (12)	0.0168 (8)	0.0214 (9)	0.0214 (9)
C10	0.0287 (10)	0.0331 (10)	0.0395 (11)	0.0105 (8)	0.0193 (8)	0.0149 (9)

C11	0.0343 (10)	0.0203 (8)	0.0271 (9)	0.0026 (7)	0.0152 (8)	0.0047 (7)
C12	0.0404 (11)	0.0278 (10)	0.0330 (10)	0.0144 (8)	0.0149 (9)	0.0122 (8)
C13	0.0237 (9)	0.0321 (10)	0.0357 (11)	0.0115 (7)	0.0123 (8)	0.0096 (8)
C14	0.0269 (10)	0.0271 (9)	0.0386 (11)	0.0086 (7)	0.0189 (8)	0.0070 (8)
C15	0.0185 (8)	0.0178 (8)	0.0187 (8)	0.0002 (6)	0.0073 (6)	0.0038 (6)
C16	0.0178 (8)	0.0193 (8)	0.0235 (8)	-0.0016 (6)	0.0115 (6)	0.0050 (6)
C17	0.0220 (9)	0.0221 (8)	0.0302 (9)	0.0002 (6)	0.0164 (7)	0.0048 (7)
C18	0.0184 (8)	0.0195 (8)	0.0205 (8)	0.0010 (6)	0.0092 (6)	0.0052 (6)
C19	0.0185 (8)	0.0190 (8)	0.0188 (8)	0.0012 (6)	0.0086 (6)	0.0050 (6)
C20	0.0212 (9)	0.0207 (8)	0.0248 (8)	0.0026 (6)	0.0128 (7)	0.0041 (7)
C21	0.0171 (8)	0.0268 (9)	0.0292 (9)	0.0013 (6)	0.0150 (7)	0.0072 (7)
C22	0.0208 (8)	0.0192 (8)	0.0206 (8)	-0.0018 (6)	0.0085 (6)	0.0067 (6)
C23	0.0186 (8)	0.0170 (8)	0.0247 (8)	0.0009 (6)	0.0103 (6)	0.0048 (6)
C24	0.0331 (10)	0.0230 (9)	0.0271 (9)	0.0009 (7)	0.0165 (8)	0.0084 (7)
C25	0.0330 (11)	0.0257 (9)	0.0395 (11)	0.0051 (8)	0.0238 (9)	0.0133 (8)
C26	0.0347 (11)	0.0220 (9)	0.0281 (10)	-0.0059 (7)	0.0127 (8)	0.0050 (7)
C27	0.0311 (10)	0.0205 (8)	0.0254 (9)	-0.0025 (7)	0.0143 (7)	0.0051 (7)
C28	0.0219 (9)	0.0187 (8)	0.0270 (9)	-0.0015 (6)	0.0141 (7)	0.0052 (7)
C29	0.0315 (10)	0.0193 (8)	0.0406 (11)	0.0031 (7)	0.0237 (8)	0.0011 (7)
C30	0.0532 (15)	0.0436 (13)	0.0495 (14)	0.0252 (11)	0.0262 (12)	0.0118 (11)
F1	0.0323 (7)	0.0301 (6)	0.0591 (8)	0.0045 (5)	0.0345 (6)	0.0122 (6)
N1	0.0222 (7)	0.0173 (7)	0.0319 (8)	0.0020 (5)	0.0167 (6)	0.0039 (6)
N2	0.0238 (8)	0.0188 (7)	0.0248 (8)	-0.0020 (5)	0.0126 (6)	0.0070 (6)
N3	0.0251 (8)	0.0222 (7)	0.0341 (9)	0.0002 (6)	0.0152 (7)	0.0111 (6)
01	0.0395 (8)	0.0201 (6)	0.0445 (9)	0.0001 (6)	0.0227 (7)	0.0043 (6)
O2	0.0312 (7)	0.0333 (7)	0.0440 (8)	0.0142 (6)	0.0213 (6)	0.0214 (6)
O3	0.0235 (7)	0.0362 (8)	0.0410 (8)	0.0066 (6)	0.0180 (6)	0.0017 (6)
O4	0.0338 (9)	0.0575 (10)	0.0628 (11)	0.0180 (7)	0.0291 (8)	0.0375 (9)
O5	0.0542 (10)	0.0213 (7)	0.0401 (8)	0.0064 (6)	0.0314 (7)	0.0087 (6)
O6	0.0214 (6)	0.0181 (6)	0.0350 (7)	0.0007 (5)	0.0144 (5)	0.0017 (5)
07	0.0322 (7)	0.0191 (6)	0.0358 (8)	-0.0029 (5)	0.0232 (6)	0.0017 (5)
08	0.0412 (9)	0.0226 (7)	0.0504 (9)	-0.0047 (6)	0.0370 (7)	0.0003 (6)
O1W	0.0325 (17)	0.036 (2)	0.0339 (17)	0.0081 (9)	0.0168 (11)	0.0111 (9)
O1W'	0.051 (3)	0.092 (8)	0.057 (3)	0.018 (3)	0.028 (2)	0.035 (3)

Geometric parameters (Å, °)

Mn1—O3 ⁱ	2.0723 (16)	C18—C19	1.401 (2)
Mn1—O2 ⁱⁱ	2.0997 (15)	C18—C23	1.411 (2)
Mn1—O1	2.1028 (16)	C19—C20	1.408 (2)
Mn1—O7	2.1170 (15)	C20—C21	1.360 (2)
Mn1—O6	2.1827 (14)	C20—H20A	0.9300
C1—C6	1.390 (3)	C21—F1	1.356 (2)
C1—C2	1.395 (3)	C21—C22	1.414 (3)
C1—C7	1.496 (3)	C22—C23	1.390 (3)
C2—C3	1.379 (3)	C22—N2	1.402 (2)
C2—H2A	0.9300	С23—Н23А	0.9300
C3—C4	1.387 (3)	C24—N2	1.476 (2)
С3—НЗА	0.9300	C24—C25	1.515 (3)

<u>.</u>			a a - aa
C4—O5	1.378 (2)	C24—H24A	0.9700
C4—C5	1.385 (3)	C24—H24B	0.9700
C5—C6	1.387 (3)	C25—N3	1.483 (3)
С5—Н5А	0.9300	С25—Н25А	0.9700
С6—Н6А	0.9300	С25—Н25В	0.9700
C7—O2	1.256 (3)	C26—N3	1.490 (3)
C7—O1	1.264 (3)	C26—C27	1.523 (2)
C8—C9	1.393 (3)	C26—H26A	0.9700
C8—C13	1.394 (3)	C26—H26B	0.9700
C8—C14	1.498 (3)	C27—N2	1.468 (2)
C9—C10	1.386 (3)	С27—Н27А	0.9700
С9—Н9А	0.9300	С27—Н27В	0.9700
C10-C11	1.380 (3)	C28—O8	1.252 (2)
C10—H10A	0.9300	C28—O7	1.259 (2)
C11—C12	1.387 (3)	C29—N1	1.487 (2)
C11—O5	1.392 (2)	C29—C30	1.494 (3)
C12—C13	1.381 (3)	С29—Н29А	0.9700
C12—H12A	0.9300	С29—Н29В	0.9700
C13—H13A	0.9300	C30—H30A	0.9600
C14—O3	1.251 (3)	С30—Н30В	0.9600
C14—O4	1.263 (3)	С30—Н30С	0.9600
C15—O6	1.255 (2)	N3—H3B	0.9000
C15—C16	1.437 (2)	N3—H3C	0.9000
C15—C19	1.456 (2)	O2—Mn1 ⁱⁱ	2.0997 (15)
C16—C17	1.361 (3)	O3—Mn1 ⁱⁱⁱ	2.0723 (16)
C16—C28	1 507 (2)	O1W—H1	0.8501
C17—N1	1.307(2) 1 344(2)	01W_H2	0.8500
C17—H17A	0.9300	01W'-H1	0.9823
C18—N1	1 390 (2)	01W'-H2	1 1648
	94 25 (7)	C_{10} C_{20} H_{20A}	120.1
$03 - Mn1 - 02^{n}$	94.23 (7)	E1 C21 C20	120.1
O3-Mn1-O1	99.00 (7)	F1 = C21 = C20	118.42 (10)
O2"—Mn1—O1	110.98 (7)	F1—C21—C22	118.55 (15)
O3 ¹ —Mn1—O7	159.82 (6)	C20—C21—C22	123.01 (16)
O2 ¹¹ —Mn1—O7	98.92 (6)	C23—C22—N2	123.11 (16)
O1—Mn1—O7	89.87 (6)	C23—C22—C21	117.17 (15)
O3 ⁱ —Mn1—O6	83.01 (6)	N2—C22—C21	119.69 (16)
O2 ⁱⁱ —Mn1—O6	90.64 (6)	C22—C23—C18	120.92 (16)
O1—Mn1—O6	157.82 (6)	С22—С23—Н23А	119.5
O7—Mn1—O6	81.62 (6)	C18—C23—H23A	119.5
C6—C1—C2	118.53 (18)	N2—C24—C25	110.46 (16)
C6—C1—C7	121.02 (17)	N2—C24—H24A	109.6
C2—C1—C7	120.45 (18)	C25—C24—H24A	109.6
C3—C2—C1	120.77 (18)	N2—C24—H24B	109.6
C3—C2—H2A	119.6	C25—C24—H24B	109.6
C1—C2—H2A	119.6	H24A—C24—H24B	108.1
C2—C3—C4	119.57 (18)	N3—C25—C24	109.14 (16)
С2—С3—НЗА	120.2	N3—C25—H25A	109.9
		-	

С4—С3—Н3А	120.2	С24—С25—Н25А	109.9
O5—C4—C5	124.49 (18)	N3—C25—H25B	109.9
O5—C4—C3	114.36 (17)	С24—С25—Н25В	109.9
C5—C4—C3	121.01 (18)	H25A—C25—H25B	108.3
C4—C5—C6	118.62 (19)	N3—C26—C27	110.69 (15)
C4—C5—H5A	120.7	N3—C26—H26A	109.5
С6—С5—Н5А	120.7	C27—C26—H26A	109.5
C5—C6—C1	121.51 (18)	N3—C26—H26B	109.5
С5—С6—Н6А	119.2	С27—С26—Н26В	109.5
С1—С6—Н6А	119.2	H26A—C26—H26B	108.1
O2—C7—O1	125.27 (18)	N2-C27-C26	109.42 (16)
O2—C7—C1	117.92 (18)	N2—C27—H27A	109.8
O1—C7—C1	116.81 (18)	С26—С27—Н27А	109.8
C9—C8—C13	118.67 (19)	N2—C27—H27B	109.8
C9—C8—C14	121.97 (18)	С26—С27—Н27В	109.8
C13—C8—C14	119.29 (17)	H27A—C27—H27B	108.2
C10—C9—C8	121.04 (19)	O8—C28—O7	123.65 (15)
С10—С9—Н9А	119.5	O8—C28—C16	116.83 (16)
С8—С9—Н9А	119.5	O7—C28—C16	119.52 (16)
C11—C10—C9	118.86 (19)	N1-C29-C30	111.51 (17)
C11-C10-H10A	120.6	N1—C29—H29A	109.3
C9—C10—H10A	120.6	С30—С29—Н29А	109.3
C10-C11-C12	121.40 (19)	N1—C29—H29B	109.3
C10—C11—O5	116.02 (19)	С30—С29—Н29В	109.3
C12—C11—O5	122.25 (19)	H29A—C29—H29B	108.0
C13—C12—C11	119.01 (19)	С29—С30—Н30А	109.5
C13—C12—H12A	120.5	С29—С30—Н30В	109.5
C11—C12—H12A	120.5	H30A—C30—H30B	109.5
C12—C13—C8	120.93 (19)	С29—С30—Н30С	109.5
C12—C13—H13A	119.5	H30A—C30—H30C	109.5
C8—C13—H13A	119.5	H30B—C30—H30C	109.5
O3—C14—O4	124.1 (2)	C17—N1—C18	119.41 (15)
O3—C14—C8	116.81 (19)	C17—N1—C29	117.84 (15)
O4—C14—C8	119.05 (18)	C18—N1—C29	122.66 (15)
O6—C15—C16	124.88 (15)	C22—N2—C27	115.72 (15)
O6—C15—C19	119.88 (16)	C22—N2—C24	114.10 (14)
C16-C15-C19	115.23 (15)	C27—N2—C24	111.64 (15)
C17—C16—C15	119.13 (15)	C25—N3—C26	110.69 (15)
C17—C16—C28	117.57 (16)	C25—N3—H3B	109.5
C15-C16-C28	123.30 (16)	C26—N3—H3B	109.5
N1—C17—C16	125.34 (17)	C25—N3—H3C	109.5
N1—C17—H17A	117.3	C26—N3—H3C	109.5
C16—C17—H17A	117.3	H3B—N3—H3C	108.1
N1—C18—C19	118.70 (15)	C7—O1—Mn1	127.16 (13)
N1-C18-C23	121.14 (16)	C7—O2—Mn1 ⁱⁱ	139.01 (13)
C19—C18—C23	120.16 (16)	C14—O3—Mn1 ⁱⁱⁱ	136.07 (15)
C18—C19—C20	118.98 (16)	C4—O5—C11	120.98 (16)
C18—C19—C15	122.11 (16)	C15—O6—Mn1	119.80 (11)

C20-C19-C15	118.89 (16)	C28—O7—Mn1	1	31.03 (11)	
C21—C20—C19	119.72 (17)	H1—O1W—H2	1	20.8	
C21—C20—H20A	120.1	H1—O1W'—H2	8	86.6	
Symmetry codes: (i) x-1, y-1, z	z; (ii) - <i>x</i> +2, - <i>y</i> +1, - <i>z</i> +1; (iii)	<i>x</i> +1, <i>y</i> +1, <i>z</i> .			
Hydrogen-bond geometry (Å	, °)				
D—H···A	D—H	H H…A	$D \cdots A$	D—H··· A	
O1W'—H2···O3 ⁱ	1.16	2.40	3.359 (14)	138	
O1W'—H2···O4 ⁱ	1.16	1.87	2.874 (12)	142	
N3—H3B···O8 ⁱ	0.90	1.80	2.694 (3)	169	
N3—H3C····O4 ^{iv}	0.90	1.83	2.716 (3)	169	
Commentation and and (i) or 1 or 1 or	- (i) - 1 - 2 -				

Symmetry codes: (i) *x*-1, *y*-1, *z*; (iv) *x*-1, *y*-2, *z*.

Fig. 1